lunes, 24 de noviembre de 2014

http://www.scielo.org.mx/scielo.php?script=sci_arttextpid=S1870-66222009000200017

http://calculointegralunivia.wordpress.com/2012/03/23/la-constante-de-integracion-y-sus-condiciones-iniciales/
http://filter.bravetraffic.com/filterq=Matem%EF%BF%BDticas+II&i=RiNOpGlsgjg_0&t=1189918155

conclusiòn del modulo 4


Método de reducción.

 Consiste en multiplicar ecuaciones por números y sumarlas para reducir el número de incógnitas hasta llegar a ecuaciones con solo una incógnita.


 Método de sustitución.
Lo que se busca es que esta ecuación dependa de menos incógnitas que las de partida.

  Matriz:


Se puede definir una matriz, como un conjunto de elementos (números) ordenados en filas y columnas.

  Matriz cuadrada:

 Se dice que una matriz A es cuadrada si tiene el mismo número de filas que de columnas. Ejemplos de matriz cuadrada:

Puede ser una matriz con valores A\in\mathcal{M}_{3\times 3}(\mathbb{R})

   A =
   \begin{bmatrix}
      +4 & +7 & -9 \\
      +2  & +1  & +7 \\
      -5 & +6 & +9
   \end{bmatrix}

 Matriz rectangular:

Es aquella matriz que no es cuadrada, esto es que la cantidad de filas es diferente de la cantidad de columnas.
Puede ser de dos formas; vertical u horizontal.

Matriz identidad:

 Se llama matriz identidad de orden n y se nota In a una matriz cuadrada de orden n en la que los elementos de la diagonal principal son 1 y el resto 0.

Matriz transpuesta:

  Matriz traspuesta (At). Se llama matriz traspuesta de una matriz A a aquella matriz cuyas filas coinciden con las columnas de A y las columnas coinciden con las filas de A.

Aplicaciones: Modelo insumo-producto, analisis de ventas y comportamiento del consumidor

El Modelo Insumo Producto (MIP) puede definirse como un método de análisis, utilizado tanto en economía teórica como aplicada, que tiene por objeto encontrar las relaciones entre los diferentes factores de producción utilizados y el producto que se obtiene de ellos. El análisis de insumo-producto no tiene en cuenta la demanda; su objetivo es determinar el nivel de eficiencia para un conjunto finito de factores con el propósito de producir un conjunto previamente determinado de bienes (Clark, 1964). Para llegar a este objetivo se considera un conjunto de ecuaciones lineales relacionadas entre sí cuya solución se obtiene mediante técnicas de programación lineal.



 A fin de presentar en las siguientes líneas la esencia del modelo de Insumo–Producto, imaginemos una economía sin comercio exterior y sin impuestos, para simplificar la exposición. Pensemos en una matriz insumo–producto esquemática como la que se muestra a continuación (véase Leontief, 1986 y Millery Blair, 1985).
Donde el elemento típico de es Wij, que representa las ventas del sector al jes un vector columna que muestra las ventas del sector a la demanda final y es un vector hilera que muestra los pagos del sector a los factores de producción.
Entonces, la matriz insumo producto se puede representar alternativamente como:
que no es más que una representación de la matriz insumo producto en términos de flujos.
Definamos ahora Wij = aij qj , es decir el coeficiente aij = Wij / qj , y tenemos:
que, expresado en forma matricial, se reduce a:
q = Aq + f
donde la matriz es la matriz de coeficientes cuyo elemento típico es aij.
Hasta ahora, el sistema no es más que una forma contable de representación de flujos en la matriz de Insumo–Producto y no se ha postulado ningún comportamiento económico. Sin embargo, si se piensa en este sistema como un sistema de ecuaciones que representa el funcionamiento de una economía y se hace el supuesto de que los sectores operan con funciones de producción que no permiten sustituibilidad entre insumos (coeficientes aijfijos), podemos entonces imaginar que el sistema describe la formación de la oferta y demandas. Se tiene entonces la representación de un modelo económico en el que los precios de los factores son fijos.
Este sistema tiene la siguiente solución:
donde la matriz es conocida como la matriz inversa de Leontief o matriz de multiplicadores (análoga al multiplicador keynesiano).
La matriz (I –A)–1 es fundamental en el análisis insumo–producto, pues muestra los impactos totales de la demanda de producto de cada sector en el resto de los sectores. Es decir, esta matriz tiene características análogas a las del multiplicador keynesiano pues permite incorporar la interdependencia tecnológica del sistema productivo y rastrear la generación de la demanda final hacia atrás en el sistema. Entonces permite calcular cuánta producción se requiere para atender diversos niveles de demanda final y, en consecuencia, cómo deberían cambiar los niveles de producción para satisfacer esos cambios en la demanda final, los que pueden provenir de, por ejemplo, aumentos en los montos de inversión, pública y/o privada, además de otros componentes de la demanda final. Nótese que, en la medida en que se pueden estimar los niveles de producción requeridos en todos los sectores para satisfacer el cambio en la demanda final, se pueden también estimar los requerimientos de insumos, empleo e ingreso de todos los sectores.

Regla de Cramer

La regla de Cramer es un teorema del álgebra lineal que da la solución de un sistema lineal de ecuaciones en términos de determinantes. Recibe este nombre en honor a Gabriel Cramer (1704 - 1752), quien publicó la regla en su Introduction à l'analyse des lignes courbes algébriques de 1750, aunque Colin Maclaurin también publicó el método en su Treatise of Geometry de 1748 (y probablemente sabía del método desde 1729).1
La regla de Cramer es de importancia teórica porque da una expresión explícita para la solución del sistema. Sin embargo, para sistemas de ecuaciones lineales de más de tres ecuaciones su aplicación para la resolución del mismo resulta excesivamente costosa: computacionalmente, es ineficiente para grandes matrices y por ello no es usado en aplicaciones prácticas que pueden implicar muchas ecuaciones. Sin embargo, como no es necesario pivotar matrices, es más eficiente que la eliminación gaussiana para matrices pequeñas, particularmente cuando son usadas operaciones SIMD.
Si \mathbf{Ax} = \mathbf{b} es un sistema de ecuaciones. \mathbf{A} es la matriz de coeficientes del sistema, \mathbf{x} = (x_1,\dots,x_n) es el vector columna de las incógnitas y \mathbf{b} es el vector columna de los términos independientes. Entonces la solución al sistema se presenta así:

   x_j =
   \cfrac {
      \det(\mathbf{A}_j)
   }{
      \det(\mathbf{A})
   }
donde \mathbf{A}_j es la matriz resultante de reemplazar la j-ésima columna de \mathbf{A} por el vector columna \mathbf{b}. Hágase notar que para que el sistema sea compatible determinado, el determinante de la matriz \mathbf{A} ha de ser no nulo.

Propiedades de los determinantes

Los determinantes tienen las siguientes propiedades que son útiles para simplificar su evaluación.
En los párrafos siguientes consideramos que  A  es una matriz cuadrada.

Propiedad 1.


Si una matriz  A  tiene un renglón (o una columna) de ceros, el determinante de A es cero.



Ejemplo 1.

            Sea 

Desarrollando por cofactores del primer renglón se tiene

                     

Propiedad 2.


El determinante de una matriz  A   es  igual al determinante de la transpuesta de  A.


 Esto es
                                                

Ejemplo 2.

                      Sea       

La transpuesta de A  es          


Propiedad 3.


Si se intercambian dos renglones (o dos columnas) de una matriz  A entonces el determinante cambia de signo.


Ejemplo 3.

Sea            con      

Intercambiando los renglones  1  y  2   la matriz queda

           con     

Note que los determinantes se calcularon expandiendo por cofactores de la primera columna.

Propiedad 4.


Si una matriz  A  tiene dos renglones (o dos columnas) iguales  entonces   det A = 0.           



Ejemplo 4.

Sea           entonces 


Propiedad 5.


Cuando un solo renglón (o columna) de una matriz  A  se multiplica por un escalar  r  el determinante de  la matriz  resultante es  r  veces el determinante de  A,   r det A.



Ejemplo 5.

Sea       cuyo determinante se calculó en el ejemplo 2, 

Multiplicando el tercer renglón de A por el escalar  r = 3 se tiene la matriz  B siguiente

                                                

cuyo determinante, desarrollado por cofactores de la primera columna de B es     

      

Propiedad 6.


Si un renglón de la matriz  A  se multiplica por un escalar  r   y se suma a otro renglón  de A,  entonces el determinante de la matriz resultante es igual  al determinante de A,  det A.   Lo mismo se cumple para las columnas de A.



Ejemplo 6.

Sea       cuyo determinante se calculó en el ejemplo 2, 

Multiplicando la segunda columna de A por el escalar  2  y sumándola a la columna 3 se obtiene la matriz B siguiente
  
                     

Expandiendo por cofactores de la primera columna se tiene

       


Propiedad 7.


Si  A  y  B  son matrices de , el determinante del producto AB es igual al producto de los determinantes de A y de B.


Esto es
                                              

Ejemplo 7.

Sean           y           

con       y     

 El producto     

Y su determinante  es    

Entonces     .

Propiedad 8.


El determinante de la matriz identidad I es igual a 1 (uno)


Ejemplo 8.

I =                   det I = (1)(1) – (0)(0) = 1

Propiedad  9.


El determinante de una matriz singular, es decir, que no tiene inversa, es igual a 0 (cero)


Ejemplo 9.
J =           |J| = (1)(-12) – (-3)(4) = -12 +12 = 0

Se puede fácilmente comprobar que la matriz J no tiene inversa.


Uso de las propiedades para calcular determinantes de alto orden.

Al utilizar las operaciones elementales sobre renglones, se puede reducir un determinante a una forma mas fácil de evaluar.  Si se reduce a una forma triangular superior o inferior, el determinante es el producto de los elementos de la diagonal principal.  Al hacerlo hay que tomar en cuenta las propiedades 3,  5  y  6,  como en el siguiente ejemplo.

Ejemplo 10.

Calcular el determinante de la matriz  A  de 

                 

Simplificamos el cálculo del determinante de A  reduciendo por renglones

      

Entonces, la permutación P14  cambia el signo de  det A , las operaciones    y      no  cambian el valor del determinante.
De esta forma
                         

Se podría seguir reduciendo a la forma triangular, pero observando que hay varios ceros en el tercer renglón resulta fácil desarrollar por cofactores, primero de la primera columna, y después del tercer renglón: